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SOME EFFECTS OF FLIGHT PATH AND ATMOSPHERIC VARTATIONS
ON THE BOOM PROPAGATED FROM A SUPERSONIC ATRCRAFT

By Raymond L. Barger

SUMMARY

Equations for the shock wave envelope and cusp line associated with the
boom propagated from a supersonic aircraft are formulated in terms of the moving-
trihedral coordinate system for flight in a uniform atmosphere and also in an
atmosphere with a linear sound-speed gradient. Ray-tube theory is used to cal-
culate the lateral distribution of boom intensity in an atmosphere with a linear
sound-speed gradient and also to investigate the effect of a general wind and
sound-speed gradient on the ground-track intensity. The relative effects of wind
and temperature gradient are treated. The mechanisms of focusing by winds and by
ground structures are discussed qualitatively.

INTRODUCTION

The advent of supersonic aircraft with their attendant noise problems has
been accompanied by considerable literature on the subject of sonic-boom propaga-
tion in the atmosphere. The location of the ground pattern and the calculation
of boom intensity have been treated in a number of papers (ref. 1, for example)
for unaccelerated flight in a uniform atmosphere. References 2 and 3 contain
an analysis based on geometrical acoustics for a uniform atmosphere of the con-
ditions for focusing resulting from aircraft acceleration or turning maneuvers,
together with an estimate of the intensity of the boom at the focal points. Some
effects of a linear sound-speed variation with altitude were studied in refer-
ence 4. For this simplest kind of atmospheric nonuniformity, the equations for
the wave and wave envelope were derived in reference 4; but computing-machine
techniques have been required for sound-ray tracing when the effects of winds or
of a general sound-speed variation are considered (refs. 5 and 6). The geometry
of sound propagation in a nonuniform atmosphere has also been treated in a number
of studies in which the sonic-boom problem was not directly involved (for example,
refs. 7 and 8).

This paper presents a study of several aspects of the effects of accelera-
tion, turning maneuvers, and refraction on the shock-wave distribution and boom
intensity, with some emphasis on the application to flights of supersonic com-
mercial aircraft (ref. 9). In extending previous results for the present analy-
sis, an effort has been made to avoid duplication of those results, within
reasonable limits. For example, in reference 2, the conditions for cusp formation



are discussed; but, in the present paper, the actual spatial distribution of the
cusp line is treated, and parametric equations for this line are derived. The
use of the moving-trihedral coordinate system in this analysis results in some
simplification of the equations.

The moving-trihedral method of analysis is also applied to the study of the
distribution of the shock envelope and cusp line in an atmosphere with a linear
sound-~-speed gradient for constant-altitude flight. The lateral distribution of
boom intensity for fiight in this kind of atmosphere is then calculated by means
of a ray-tube analysis. The ray-tube method is also used to investigate the
effect on the ground-track boom intensity of an arbitrary vertical variation of
sound speed and headwinds or tallwinds. The relative effects of wind and tem-
perature gradients on refracting the rays are then treated. In addition, the
mechanisms of focusing of slightly inclined rays by winds and by ground struc-
tures are discussed qualitatively.

SYMBOLS

AA cross-sectional area of ray tube

AAg area of intersection of ray tube with ground

a sound speed

B angle between vertical plane containing tangent to flight path and
vertical plane containing sound ray under consideration

c characteristic velocity in Snell's law

Ad perpendicular distance between upper and lower bounding rays of ray
tube

g acceleration due to gravity

H=1-%

h flight altitude, when assumed constant

I boom overpressure intensity

k approximgte absolute value of vertical sound-speed gradient in ICAO
standard atmosphere, 0.00407 sec-l

E> unit vector in positive z-direction

1 wind gradient when variation of wind speed with altitude is linear



M Mach number
Q infinitesimal radial coordinate of initial ray cone (fig. 4(b))

R distance of generic point of wave front at time t from point of
emission at time T (propagation in a uniform atmosphere)

T distance along ray path

;% unit vector in ray-path direction

s distance along flight path

T radius of torsion of flight path

t time at wave front

% =1t - T

w,v components of wind veloecity along x- and y-axes

v airplane airspeed, ds/dr

X,¥,2 rectangular Cartesian coordinates fixed with respect to earth, with

z positive upward and equal to zero at ground level

XxY,72 rectangular Cartesian coordinates referred to moving trihedral of
flight trajectory (fig. 1)

cosa, COsB, cosy direction cosines of wave-front normal

0 absolute value of inclination angle of wave-~front normal

A=1- iﬁ

E,m,6 aircraft position coordinates in x,y,z system

p radius of curvature

T time at which a disturbance is produced at source

Ay angle subtended at source by an incremental section of ray cone at
source

X absolute value of angle of inclination of secondary tangent vector

Q angle with horizontal measured in plane perpendicular to flight path,

positive downward



Subscripts:

c cuspidal ridge

F3 conditions at ground level

gt ground track

max maximum

e} conditions at flight level

u conditions in a uniform atmosphere

A prime is used to denote derivative with respect to 7.
ANATYSIS

Formation of Superboom Region Due to
Adrcraft Acceleration and Turning

In this section, as throughout the paper, it is assumed that the geometry of
sonic~-boom propagation is described by the theory of geometric acoustics. This
assumption is usually made in the literature, but the methods of geometric acous-
tics are not applicable quantitatively to the prediction of boom intensities near
the aircraft or in the immediate vicinity of a cusp. They are useful for studying
the spatial distribution of the shock envelope, for locating cusp lines, and for
estimating relative intensities from ray-tube cross-sectional areas.

A second assumption, which is made in this section only, is that the atmos-
phere is uniform. Aside from the considerable simplification of the equations
which results from this approximation, it will be seen that, for the special case
of a high supersonic Mach number aircraft flying at or near cruise conditions,
the effects of turning or accelerating are not normally greatly altered by the
presence of atmospheric nonuniformities.

The X,Y,Z coordinates referred to the moving-trihedral coordinate system
(ref. 10) are as shown in figure 1. In this system the equation of a sound wave
front at time t due to a disturbance produced at time T 1is

X2 + Y2 + 22 = a®(t - 1)2 = R® (1)

The envelope of these spherical sound waves, that is the shock front, is found at
any particular time (t = Constant) by solving equation (1) simultaneously with
its derivative with respect to the trajectory parameter T:

XX' + YY' + ZZ' = -a?(t - T) = -aR (2)



At any particular time, the sound wave fronts and their envelopes are fixed in

space, and equations (31), page 65, of reference 10 are therefore applicable.
Use of those equations in the pres-
ent context yields

Z{r) Z(r,)

v oy &% gL )
X v ds (D (3a)

dy X 7z
Yr=vZ=_y(£+2 b
it as (p T) (30)

Flight path

y 71 =v 42 -y L c
= = (3c)

X
where p 1is the radius of curva-
Figure 1.- Moving-trihedral coordinate system. ture of the flight path, V 1is the
speed of flight, and T 1is the
radius of torsion of the path. Sub-
stituting the values for X', Y', and Z' from equations (3) into equation (2)
and simplifying gives

-VX = -aR (1)
or
X(r) = § (42)

The characteristic line corresponding to any given value of T 1is therefore
a circle lying in a plane which is perpendicular (at the center of the circle) to
the instantaneous tangent to the flight path at time 7, and which is at a dis-
tance R/M from the position of the airplane at time 7. The radius of the cir-

cle \/YE + 72 = Rl - JZ measures the extent of the spreading of the shock front.
d M

At any fixed value of t, the set of all these circles associated with different
values of T forms the wave envelope, or shock front. If sections of the enve-
lope tend to overlap, extreme overpressures may be generated along the line of
intersection, which is mathematically an edge of regression (ref. 10, p. 60) and
is called the cuspidal ridge or cusp line in the sonic-boom literature. This
line is found by differentiating equation (4) with respect to T:

V'X + VX' = V'X + v2(% - ) = -2
or

VX + (SQE)Y _ V2 - a2 (5)

When equation (5) is solved (with respect to the parameter ), together with
equations (1) and (4a), the following parametric equations of the edge of regres-
sion are obtained:



Xe = % (62)
- -V R
te=o(n- L) (60)
2_ 2 V' R\
ZC = *1/AR® - o} (7\ - V_2 -M-) (6C)
_ 1
where A= 1 - iE-

Consider first the case in which the airplane is turning but V' is zero.

Then, equation (6c) becomes
Ze = iWKRE _ OERQ

From this equation, it is seen that the edge of regression, or cusp line (see

fig. 2(a)), is symmetric about the instantaneous (at time ) plane of the turn
(the osculating plane), and that its intersection with this plane is not at the
sound source, that is, not at the airplane, but at a point in the osculating plane

at a distance R¢ = pVA from the location of the source at time T =t - Egz.

I-63-6658

(a) Wire model depicting cusp line and representative characteristic lines of shock envelope
resulting from a planar turn.

Figure 2.- Cusp formation due to flight maneuvers.



To illustrate the application of equations (6), consider an airplane making
a constant-altitude (60,000 feet) turn at a steady velocity of 2,500 ft/sec cor-
responding to a Mach number of about 2.5. Inasmuch as the passengers in a com-
mercial aircraft should not be subjected to a centrifugal acceleration of more
than about 0.5g, the radius of curvature of the turn must be, at least,

(2.5 x 105)2
16

or roughly 75 miles, and the cuspidal point in the osculating plane is at a dis-

tance pVX at a lateral distance Y. = pA which is about 62 miles. The distance
of the ground cusp point from .the source would be over 63 miles. These distances
are so great that in all probability these rays would never reach the ground
because of atmosphere refractive effects.

o = ~ 3.9 x 10° ft

Of course, it is possible for the flight-path curvature to be in the vertical
rather than the horizontal plane. For example, VGH records indicate that oscilla-
tions in normal acceleration of more than 10.5g occasionally occur in the course
of commercial operations. (See ref. 11.) The data of reference 11 were taken
from turbojet and turboprop transports flying at subsonic speeds, but it appears
likely that a supersonic transport would be subject to similar oscillations and
that these oscillations would cause variation in the boom intensity on the ground.

If, for example, an airplane at a Mach number of 1.3 (corresponding to a
steady velocity of 1,300 ft/sec) is undergoing a normal-acceleration deviation
of -0.5g at the crest of an oscillation, the corresponding cusp point in the
vertical plane should be roughly 60,000 feet below the airplane. If the flight
altitude is less than 60,000 feet, say 40,000 feet, the converging ground-track
rays will not focus at ground level, but the ground-track intensity will be
increased to the extent that the rays have converged.

This vertical oscillation may well account, at least in part, for the con-
siderable variation in measured flight-track overpressures for an aircraft in
nominal straight flight. (See fig. 12 of ref. 12.) The effect of this vertical
oscillation should be small and possibly negligible for a supersonic transport
under cruise conditions because the velocity will be so great that any curvature
of the path must necessarily be small and, furthermore, because any contribution
of atmospheric turbulence to this airplane flight oscillation should diminish at
high altitudes. This phenomenon may prove to be significant during the ascent
stage of a flight, when the velocities and altitudes are much lower than those
for cruise conditions; however, any compression will be modified somewhat by the
effect of the climb angle, which is to tilt the rays upward so that they travel
a greater distance before reaching the ground.

When an alrplane makes a turning maneuver, the part of the shock envelope on
the outside of the turn will tend to spread out; thus, the intensity should be
weakened. However, the predicted decrease predicated on considerations of volume
effects anly would not be entirely valid because some intensification due to the
inclination of the airplane 1ift vector may occur as a result of the centrifugal
acceleration.



Consider now an airplane that is accelerating but not turning. In this
case, 1/p 1is zero, and equation (5) can then be written in the form

which, together with equation (6a), yields the following equation for the dis-
tance of the cuspidal ridge from the source:

2
a
R=a(t—'r)=V-—‘M(M2-l)
This equation determines, at any fixed value of t, a specific value of the
parameter T for which the associated characteristic line is also the edge of
regression. This cusp line is therefore a circle in a plane perpendicular to the
flight path. Its radius is

o

W2 -1 g a2(y2 1)5/2

M T oyt

<

Figure 2(b) is a schematic drawing of the shock wave and cusp line resulting

from the acceleration of an airplane. In commercial transport flights, the accel-
eration V' should be limited to

about O.lg, out of consideration
for passenger comfort. Therefore,
when the airplane is nearing its
B cruise velocity, the focusing

L _ B .
N JY7L“;>§\—c”pnne distance would be large. For
Horizon .
—Ground cusp points example, lf M = 2 and

a = 1,000 ft/sec, the cuspidal
ridge is a clrcle of radius

—-Shock front

(b) Schematic drawing indicating formation greater than 300 miles. Under
of a cusp line resulting from aircraft these conditions, the boom inten-

acceleration. . 2 . .
sity would be negligible even if

Figure 2.- Concluded. the focused rays did reach the

earth. On the other hand, when
the airplane is accelerating through the lower supersonic Mach number range, the
problem is potentially a severe one. For example, for Mach numbers less than
1.25 at an altitude of 40,000 feet, the cusp points on the earth occur less than
5 miles from the ground track; that is, in the region where the intensity would
already be significant, even in the absence of focusing. The superboom which may
be associated with this initial acceleration into the supersonic Mach number
range should be highly localized because the cusp points on the earth move rap-
idly away from the flight track as the Mach number increases. Therefore, after
the superboom occurs on the ground track, the intensity on the ground track
should decrease rapidly. An acceleration superboom has been observed experi-

mentally. (See ref. 12.)



Formation of Shock Envelope and Cusp Line in the Presence of
a Linear Sound-Speed Gradient

In this section it will be assumed that the flight is horizontal so that the
effects of refraction can be studied without the additional complication of the
effect of changing altitude.

According to reference 4 (eq. (I.5)), the eguation of a sound wave front in
an atmosphere with a linear sound-speed gradient at time t due to a disturbance
at time T 1is

2 2
(x-£)2 & (y - )2+ {(Z - ¢t) +%E0sh k(t - 1) - 1]} = :% sinh%k(t - 1) (7)

For constant-altitude flight, the equations can be simplified by the use of
the moving-trihedral coordinate system, but even for this restricted case the
analysis is correct only if the osculating plane is considered to be horizontal
for straight flight. With this convention, equation (7) can be written

a ~ 2 a02 ~
X2 + Y2 + [z + To(cosh kt - 1)] = — sinh%k% (72)
k
or
a, a, ~
X2+Y2+Z2+2—;-<Z-?o>(cosh kt - 1) =0 (7o)

where T denotes t - T and ap denotes the sound speed at flight altitude.
Taking the derivative of relation (7b) with respect to the parameter T gives

a
XX' 4+ YY' + 770 - ao(Z - TO)Sinh kT = 0

Substituting relations (3) into this equation yields

XV + ag (z - %)sinh xt = 0 (8)
or
X = %(%0 - Z)sinh KT (8a)

Equations (7Tb) and (8a) are the equations of the shock envelope. (A machine

program for calculating the ground pattern for flight 4in an atmosphere with linear

sound-speed gradient was developed in connection with the work of ref. 13.)



In order to find the edge of regression of the shock envelope, equation (8)
can be differentiated with respect to 1 and the resultant equation solved
simultaneously with equations (7b) and (8a). If the flight trajectory is still
assumed to be horizontal, the derivative of equation (8) with respect to T is

EQ-)cosh kt = 0

|+ 1 - -
XV' + X'V aok(Z <

Substituting the relation for X' from equation (3a) into this equation yields
a ~~
XV' o+ V2<% - 1) - aok<Z - Eo->cosh x¥ = 0

or

XVt + V2 % = V2 - a_Zcosh k¥ + ajkZ cosh kT = O (9)

Equations (9), (8a), and (7b) are the equations of the cusp line.

The effects of refraction can be studied more clearly by isolating them
from the effects of acceleration and turning. Thus, for steady, straight, level
1

flight <V' =35 = o), equation (9) becomes

V2 = ao(?o - ch)cosh kT

Therefore,
7 = S _ XE— sech kTt
k agk
or
Zo = 1—0(1 - MPsech k%’) (10a)

Substituting into equation (8a) yields

a ~
© M tanh k% (10b)

= X tanh kt = -2
Xe A

=i

which solved together with equations (7b) and (10a) gives

Yo = %‘l (M2 - 1)(1 - MPsecn®it) (10¢)

Equations (10) are the parametric equations for the cusp line caused by
refraction. It will be shown in the following section that for straight flight

10



the cusp normally does not occur at ground level, except on the ground track when
" the rays are just tangent to the ground.

On the ground track, sech kt = 1/M since Y. = O. Inasmuch as a linear
sound-speed gradient rarely extends beyond an altitude of 40,000 feet, the lim-
iting Mach number at which the ground cusp will occur is found by inserting
Zo = -40,000 feet and sech kt = 1/M into equation (10a) and solving for M.

This limiting Mach number is thereby found to be about 1.16.

It is rather interesting. that a sound wave front propagating outward in an
atmosphere with a linear sound-speed gradient maintains a spherical form (see
eq. (7a)) although the rays are curved. The center of the sphere moves downward
with time, and the radius does not increase at a constant rate but with an accel-
eration. The result is a shock envelope resembling somewhat that shown schemati-
cally in figure 3.

Flight trujectiy

Figure 3.- Exaggerated schematic diagram of wave propasgation from source moving
in straight, steady, level flight in an atmosphere with a linear varlation
of sound speed with altitude.

Lateral Distribution of Ground-Level Boom Intensity

In the prevlious sections, the spatial distribution of the shock envelope and
of superboom regions was investigated by means of a geometrical study of the wave-
front locations. For the purpose of studying the quantitative aspects of the
compression of the shock, however, it is simpler to treat the trajectories of the
elements of the wave fronts, that is, the rays. One reason for this shift in
point of view is the fact that Snell's law of refraction for a stratified atmos-
phere with no wind

a sec 8 = ¢ = Constant
applies directly to the rays. Furthermore, the energy flux in a region bounded
by specific rays (a ray tube) remains approximately constant; consequently, the

boom intensity varies inversely as the square root of the cross-sectional area
of the ray tube. (See ref. 2.)

11



To determine the lateral distribution of intensity in a nonuniform atmos-
phere by computing the ray-tube cross-sectional area is a complex problem, because
the cross section cannot be taken to be a rectangle. In order to simplify the
analysis, a linear vertical sound-speed gradient will be assumed, with no wind.

In this atmosphere, the sound rays are arcs of circles whose centers are at alti-
tude as/k. (See ref. 7.) Furthermore, inasmuch as there is no horizontal com-

ponent of the sound-speed gradlient, each ray remains in the same vertical plane
throughout its trajectory. The range of a ray that strikes the ground is simply
the length of its projection on the ground. The airplane is assumed to be in
straight, steady, level flight in the x-direction. The ray tube to be examined,
as shown in figure 4, consists of a part of the ray cone emitted during time At.
This ray tube is at an angle  from the horizontal measured in a plane perpen-

dicular to the flight path.

b Ax > : : o
s - - _ — - _ Flight direction
I~ X
QN N N
X, \\\ 90
NN O
~N
\\ ~ NN
N \\ N
N N
N N~
\\ ~ N ~
\\ ~ \ ~

Ray-tube
section

(a) Initial ray tube.

Figure L.- Ray-tube geometry.
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R, sin8,=Q sinfd

(b) Initial ray cone.

Figure 4.- Concluded.

The rays representing the upper boundary of this ray tube all have initial
inclination angle 6,. They therefore have the same inclination at each altitude
and maintain the same horizontal displacement. Their ground intersection thus
forms a stralight-line segment of length Ax parallel to the x-dlirection. Simi-
larly, the rays of the lower boundary of the ray tube all have initial inclina-
tion angle 0o + Mo, and thelr ground strike forms a straight-line segment also
of length Ax parallel to the x-direction but displaced somewhat from the ground
intersection of the upper boundary rays. If the "sides" of the ray-tube ground
intersection are approximated as straight lines, this intersection is a paral-
lelogram with base length Ax. The "height" of the parallelogram is the incre-
mental component of the range Ayg, normal to the x-direction, of the rays asso-
ciated with the incremental angle AQ.

In order to calculate this parallelogram "height," an expression for y, as
) Xp g

a function of  1is needed. A ray associated with the angle Q and originating
at altitude h has initial inclination 6, and radius of curvature

13



a,
(_fg - h) sec 0g. The radius of curvature

a,
can also be expressed as —k§ sec Og; thus,

6g and 0o are related by the following
expression:

9g sec Bg = <l - ?—é)sec 8o = H sec 0¢ (11)

The range of the sound ray is
ag ag .
< - tan 6o - 2 tan Bg. (See fig. 5.)

Source

Range T If the vertical plane containing the ray
h forms an angle B with the vertical plane
Ground— ] J v through the ground track, the y-component

of the range is
Figure 5.- Sketch used for calculating
a,

range of a sound ray in an atmosphere . ag &
with a linear sound-speed gradient. Yg = sin B % - hjtan 64 - " tan 6g
(12)

Figure 4(b) represents conditions existing in the immediate neighborhood of
the source of the disturbance, and the lengths Ro and Q are therefore infin-
itesimal quantities. Within this small region, the rays are virtually straight
lines. A relationship that is apparent from this figure is

Q cos  csc B = Q sin Q cot 0

or

sin B = cot © tan 6o (13)
Also

Rp sin 65 = Q sin Q
or

sin 8 =\/1 - b-;_L—e sin @ = Y sin Q (14)

Expressing 8, B, and 8o in terms of © by means of equations (11),
(13), and (14) and substituting into equation (12) yields

a, cos Q in°0 -
yg= a2 —2" _|{Rsing -1 +A5n2-1 (15)
k 3 - sinn H2
The incremental y-range is then
dy,
g
= == 16
g = = (16)

1k



The ground intersection of the ray tube has an area

which can be determined with the use of equation (16). The actual ray-tube cross-
sectional area AA 1is the projection of AAg onto the surface tangent to the

wave front. If the unit vector normal to this surface - that is, the unit tangent
to the ray path - is denoted by rN, then

— -
M =1y - k AAg
=SinegAAg

COSQGO
=t - M
H

\/l+7\sin2$l-l

Ahg (17)

g2

From this equation, AA (and hence the intensity distribution) can be found
directly as a function of Q. The result for AA 1is

a 2 ) . 2
AA=AxAQV7\HTg\/l+7‘Sin29 L/|hein 2 cos 8 2ol <ﬁsinﬂ-\/1+%>
H /(1 - A sin2e)” 1 - Asino H
+ - c;s Q = \IX cos O - A sin 20 (17a)
- sin .
2H2 1+ A sinzﬂ -1
72

The limiting value of Yg Occurs when

. 2
+ A sin 0 - 1

H2 =0

in equation (15). This limiting yg-range, which is

= \E =& 8g cos 0 sin O

Y,
g,max X 1 - A sin0

15



applies to those rays that are Just tangent to the ground, at the lateral edge of
the ground pattern. The ray-tube area at the extremity of the ground pattern is,

from equation (17a),
2
7\3/ &g cos 0 sin 20

<0

lim M = -Ax AQ

2H k :
Yg— Vg, max LS A sin

This quantity is positive because AN 1s negative, and 1t cannot be zero except
on the ground track (Q = 90°). Inasmuch as a cusp point corresponds to the con-
vergence of a ray tube to zero cross-sectional area, it follows that a cusp point
resulting solely from the refractive effect of a linear sound-speed gradient can

occur at the ground only on the ground track.

As yg increases (with constant AQ), Ayg increases and therefore AAg

in equation (17) increases but sin Og decreases. When the ground pattern is
only a few miles wide, Ayg is still relatively small even at the lateral edge

of the ground pattern, and sin 6g decreases so rapidly for rays off the flight

track that the net result may be a smaller ray-tube area off the flight track
than on it. In other words, the intensity may be higher off the ground track than
on it. This situation is illustrated by some results that have been calculated

by means of equations (15) and (17a). (See fig. 6.)

1.0 — -
Nonuniform atmosphere
= —— — Uniform atmosphere
I, TS
1 B
( U)91 \\\_ Cut-off —
(&) M =1.5; h = 35,000 feet. B “"‘:?\::Z_\ i
.6 | | | | | - —~ J
0 | 2 3 4 5 6 7 8 9x10*
Lateral distance from flight track,yg,ft
h.2 Nonuniform atmosphere
—— —— Uniform atmosphere
_5\
I'O — \: \\.
1 ~— L [
(1y) ~ \\’ Cui-off—-’
gf 8 — ‘M\\ A>\__\
T —
—
—_ 1T s - Te—. \
(b) M =1.3 h = 35,000 feet. ~
6 ! [ | S SRS S DR S .
0] 1 2 3 4q 5 6 7xI10*

Lateral distance from flight track ,yg,ft

Figure 6.- Several representative plots comparing lateral distribution of intensity on ground for
flight in a uniform atmosphere with that for flight in an atmosphere with a linear sound speed.
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Figure 6.- Continued.
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Figures 6(a) and 6(g) indicate that, in general, for M 2 1.5, the boom
intensity can be calculated with good accuracy without considering the bending
of the rays that results from the temperature gradient. Two considerations should
not be neglected in relating these theoretical results to the actual physical
situation. First, the rays near the lateral edge of the ground pattern are nearly
tangent to the ground and thus are more subject to the influence of atmospheric
turbulence near the ground than are the steeper rays. The effect of this turbu-
lence is generally to distort the pressure signature of the wave. (See ref. 12.)
A second important consideration is the obvious one that the atmosphere at any
given time will not conform precisely to the stationary, linear-sound-speed-
gradient model assumed in this analysis. At times the actual gradient is
stronger, and under some conditions the local gradient near the ground is sharp.
Under such conditions, the effects of refraction would be important at higher
Mach numbers than indicated in this analysis.

Intensity of Ground-Track Rays in a General Stratified Atmosphere

If the atmosphere is assumed to be stratified - that is, if all gradients are
assumed to be in the vertical direction - and if the winds are parallel to the
vertical plane including the wave-front normal (for ground-track rays this ver-
tical plane includes the x-axis), the effect of the wind can be accounted for in
the law of refraction as follows (see, for example, ref. T):

c = a(z) sec 68(z) + u(z) (18)

In other words, equation (18) is applicable when the ray is subjected to hori-
zontal headwinds and tailwinds but not crosswinds. When crosswinds must be
accounted for, the more general analysis of reference 8 can be used. This general
analysis yields the law of refraction in the form of a pair of equations which,

in the present notation and with the neglect of any vertical component of the wind
velocity, become

cp =aseca+tu+vceosfp seca
(19)

a sec B +ucos asec B +vV

€2
where ¢ and cp are constants for the ray path.

In theory, equations (19) provide the basis for a general analysis of the
effect of an arbitrary vertical variation of wind and temperature on an arbitrary
section of the shock wave. However, the complexity of this kind of analysis would
not be justified for the purposes of the present study, which are to investigate
the nature of the effects and to assess their order of magnitude. Inasmuch as
maximum wind effects occur when the full wind component is parallel to the verti-
cal plane containing the wave-front normal, these effects can be accounted for by
equation (18) and this form of the law of refraction will therefore be used here-
after in this analysis. The letter u will denote the refracting wind which is
zero at flight altitudes. 1In order to account for the wind at flight altitude,

u can be replaced by u - up and ug by ug - uvo in the resulting equations;
but, in this case, dx/dt will denote the airplane speed plus the wind speed at
flight altitude.
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Consider two ground track rays, horizontally displaced a distance Ax = V Ar,
emitted from an airplane flying in the x-direction at altitude h. (See fig. T.)

N\
Wave-front normal

Ray- direction
path direction

Figure T7.- Geometry of ground-track ray propagation in presence of wind and temperature
gradients.

Inasmuch as both rays have initially the same inclination, they both have the same
characteristic velocity. Furthermore, because the medium is stratified, none of
the factors affecting the distance traveled in the x-direction are functions of

X. Thus, at each level, both rays are subjected to the same wind and temperature
gradients, and the horizontal displacement Ax remains constant. The perpendic-
ular distance A4 between the rays is &x sin X, where X 1s the angle that the
rays make with the horizontal:

X = arc tan<f %%) = arc tan (-dz/at) _ arc tapn & sin @

dx/dt a cos 8 +u

Then,

A = AX sin X = Ax a sin 0

Va2 + 2au cos 8 + ul

The quantity Ad represents approximately the height of a ray tube that is
symmetric with respect to the vertical plane containing the ground track (at
Q =~ 90°) (figs. T and 4(b)), and it is clear that this height can approach zero
1T the ray paths are tangent to the earth. The width of this tube is approxi-

mately represented by
Z
AN JF csc 6 dz
h

and its cross-sectional area at the ground is therefore
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ag sin eg 0
Mg = -Nf Ax csc 6(z) dz (20)
ag + 2agug cos eg + ug2 h

Inasmuch as 6(z) is a rather complicated function of the wind and sound-speed

distribution, it is desirable to approximate this expression by a simpler func-

tion of u and a. Such an approximation can be made by assuming that u/a is
much smaller than unity. This assumption is normally in accord with physical

fact.

First, c¢sc 6 1in equation (20) can be rewritten as

sec O - sec 6
\[;cee -1 Vsec® + lisec o - 1

Then, by means of equation (18), in the form

csc 6 =

a. sec 0
sece=_2____o_l‘l_
a a

the variable 6 can be replaced in the equation for csc 8, and thus in the
equation for AAg (eq. (20)), by the variables a and u:

. . 0 ag sec B4 _u
Mg = Ny Ax sin %g 2 2 dz
g = -
2 Yh la, sec 8 u a, sec 0 u
1+028 . \/_o____o__+1_o___0___1
a, o) a a a a
g ag

In approximating this expression, one can neglect quantities of the order u/a
sec 6,

a
or smaller, except in the factor do py - g - 1 which, for slightly ineclined

rays, 1s quite small and, since it occurs in the denominator, has the effect of
meking the entire expression sensitive to both wind and scund-speed gradients.
The resultant approximation is

0
dz

Mg =~ =N Ax ag sec O, sin Og kjp
h Vao sec B4 + a(z)Vao sec 84 - a(z) - u(z)

o) Ug
where 6, = arc sec|— sec 05 - — |.
g ag ag
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The ray-tube cross-sectional area for an airplane flying in a uniform atmos-
phere without wind is as follows:

My = Ax sin 8o A esc 8g h = Ax Af h

The ratio of the intensities is then

IA=<%>1/2= ... n

LA h
ag sec 8p sin eg \/ﬁ dz

0 Vao sec 8o +2a(z)|ao sec 8, -a(z) - u(z)

1/2

(21)

100 ft/sec, h = 36,000 feet, u = 60 ft/sec,
1,115 ft/sec, then the increase in intensity

For ag = 970 ft/sec, headwind ugq
wind calm at ground level, and ag

due to the refractive effect of wind and temperature gradients as calculated from
equation (21) is well below 10 percent for Mach numbers of 2 or higher.

For the important case of linear sound-speed gradient (a = ag - kz) occurring

simultaneously with a linear wind gradient (u = ug - ZZ), the denominator of the

integrand in equation (21) can be expressed as the square root of a guadratic
function of =z, and the integral can be evaluated in closed form. (See for-
mule 165 of ref. 1k.)

In general, for a supersonic transport flying at or near cruise conditions
with atmospheric conditions that may reasonably be expected, the refractive com-
pression of sound waves should be less than 10 percent. On the other hand, when
the airplane accelerates through the low supersonic Mach number range, it will
pass through a critical Mach number such that the ground-track rays are Jjust
tangent to the ground, if the atmosphere is such as to cause upward bending of
the rays. Inasmuch as the cross-sectional area of the ray tube approaches zero
under these conditions, the theory predicts a superboom at the point of tangency.
Thus, the theory predicts a significant refractive compression of flight-track
rays for the general Mach number range in which the compression due to accelera-
tion is also considerable. Moreover, it is in this same range (1low supersonic)
that considerable curvature of the flight path due to vertical oscillations is
possible, which possibility adds another mechanism that may augment the boom
intensity.

If the gradient of the tailwind is sufficient to cause downward bending of
the rays, the height of the ray tube will increase, since Ax 1is constant over

the path, and the boom intensity should therefore be somewhat lower because of
the refraction.

In the absence of wind, the curvature of a sound ray can be found readily
with the use of the refraction equation (18) in the following form:

a(z) sec 6(z) = ¢
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Differentiating this relation gives

- 93 sec 8 - a sec 6 tan © QQ =0
dz dz

Thus, the less the inclination of a ray the greater is its curvature.

Now, if an airplane is in straight, steady, level flight, two ground-track
rays emitted a distance Ax apart will appear as in figure 7. Both rays have
the same inclination at flight altitude, and indeed at each successive level, and
therefore their actual perpendicular separation distance must decrease as they

bend outward.

If the airplane is accelerating, the first of two reference rays emitted will
have less inclination and hence greater curvature than the second. This differ-
ential curvature causes the rays to converge more rapidly than they would if they
were straight, as in a uniform atmosphere. The effect of the refraction is there-
fore to cause the acceleration cusp below the airplane to occur closer to the
position of the source (when the cusp rays were emitted) than it would in a uni-
form atmosphere.

If the airplane is decelerating, the first of the reference rays has more
inclination and consequently less curvature than the second, and, therefore,

spreading of the rays results.

Relative Effects of Wind and Temperature Gradients

It may be of interest to obtain an estimate of the relative effects of wind
and temperature by calculating the conditions under which the temperature and
wind refraction exactly cancel so that there is no net bending of a sound ray.

If the ray (assumed to be in the xz-plane) experiences no net refraction,
its inclination angle X remalns constant. Therefore,

4 ot X =0 (22)
dz

Now

dx/dt a cos 8 +u

= = cot 6 + z esc O
dz/dt a sin 6 a

cot X =

where again u denotes the refracting wind and so can be replaced by u - up to
account for the wind at flight altitude. Then, equation (22) becomes

2 u doe csc 6 du u da _
,(csc @ + g csc & cot e)az + @ ;5 csc B —= =0 (23)
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The quantity dB/dz can be expressed in terms of du/dz and da/dz by differ-
entiating equation (18) and solving for d6/dz:

da du
ot 8 =— + 0 t 6 =
@ _ c i cos co i (24
dz a _

Substituting equatiofl (24) into equation (23) and rearranging ylelds

cos 8 + X cos 2
du _ _ 2 da (25)
dz 1+ 2 cosdo dz
a

The angle © could be expressed in terms of u and a by equation (18), but
the form of equation (25) is satisfactory for a gqualitative discussion. From this
equation one can see that for those parts of the shock wave front that are nearly
vertical (6 =~ 0°), the wind gradient required to prevent upward bending of the
rays has approximately the same magnitude as the sound-speed gradient; but, for -
a part of the envelope that is nearly horizontal (6 ~ 90°), the required gradient
is only about u/a of the sound-speed gradient. In terms of ground-track rays,
equation (25) indicates that the wind gradient has relatively more refractive
effect at higher Mach numbers. At a Mach number of 2, the wind gradient that
would exactly counteract the effect of the temperature gradient would be only
about one-half of the value requiréd at a barely supersonic Mach number.

Mechanisms of Focusing by Winds and Ground Structures

It is a consequence of Fermat's principle (the ray path is such as to make
the ray passage time an extremum) that initially divergent rays which descend
over their entire paths through a stratified medium cannot converge. (See ref. T.)
However, machine calculations of ray paths indicate that with certain wind and
temperature distributions (ref. 6), a cusp line parallel to the flight track can
occur, and it may be of some interest to describe here the mechanism of such a
focusing.

Consider two rays of the ray cone that are very near the horizontal. Then,
as an approximation, they can be considered to lie in the same vertical plane.
Suppose, now, that the wind gradient is
such as to oppose the bending effect of Wind-velocity distribution Source
the negative sound-speed gradient and, L
also, that the wind gradient is so great

e Rays

that a downward bending of the rays -

occurs. If one of the rays has a slight —

initial upward inclination, it receives - Ground
more support from the higher wind speed - _ [w“u
at the greater altitude and thus may

arrive at §ome point on the ground at Figure 8.~ Diagram illustrating mechanism

the same time as the lower ray, as by which two initially diverging rays

illustrated in figure 8. Refractive can converge at ground level.
effects of this type have been observed ’
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experimentally at low altitudes when the temperature gradient is slight. (See
ref. 15.)

Similar effects may occur for flight in other regions where the temperature
gradient is slight but where the wind gradient 1s strong. Such conditions often
occur in the altitude range extending roughly from 35,000 feet to 50,000 feet.
In this range, the temperature gradient is usually slight, and the winds are
often decreasing in magnitude with altitude in such a way that a strong wind
gradient exists.

In the prior sections, three possible causes of shock compression have been
discussed: aircraft acceleration, trajectory curvature, and atmospheric refrac-
tion. Another possibility is that focusing may occur because of the manner in
which the rays are reflected from nonplanar terrain or structures on the ground.
Inasmuch as the shock wave near the ground may be treated locally as a plane wave,
and the rays as straight lines, the geometric calculation of the ray-tube area in
this case is straightforward.

One possibility of this kind of focusing is illustrated in figure 9 where a
ray tube is shown being reflected off the adjacent walls of two perpendicular
structures. If the angle of the ray tube is symmetric with respect to these two
walls, the reflected ray tube will tend to compress toward the vertical plane
that bisects the angle of the walls. This region of compression may intersect
the ground or, possibly, the skylight of a lower building.

~

Figure 9.~ Schematic drawing illustrating the focusing of a ray tube as a result of reflection from
the walls of a building with two perpendicular wings.
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CONCLUDING REMARKS

At the altitudes and Mach numbers of interest in connection with flights of
a supersonlc transport at or near cruise conditions, superboom effects due to
acceleration, turns, or atmospheric refraction should be negligible. On the other
hand, in the low supersonic range, all these effects, in addition to that of
changing altitude, may influence the boom intensity.

As the Mach number ilncreases, the wind becomes relatively more important in
refracting the ground-track rays. Focusing of ground-track rays (which are
initially parallel) can be caused by the temperature gradient, or by a combina-
tion of wind and temperature gradients. Cusp points off the ground track cannot
be caused by a linear sound-speed gradient, but when the combination of flight
altitude and Mach number is such that the ground pattern is relatively narrow,
then 1t is possible that the intensity off the flight track will be greater than
on it. Focusing of slightly inclined rays at a considerable distance from the
flight track can occur in the presence of a strong wind gradient. Focusing may
also occur as a result of reflection from certain forms of terrain or ground

structures.

Equations are presented for calculating the influence of wind and sound-
speed gradients on the boom intensity of ground-track rays and for calculating
the lateral distribution of intensity in the presence of a linear sound-speed
gradient.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., October 30, 1963.
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